-- dump date 20240521_103807
-- class Genbank::mRNA
-- table mrna_note
-- id note
38654000001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654000002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654000003 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000006 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654000007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
38654000024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654000031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654000048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 591 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 591 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000087 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654000095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000118 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000119 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654000120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654000124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654000155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654000157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654000160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654000175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654000191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000198 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
38654000207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654000221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654000222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654000226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 10% coverage of the annotated genomic feature by RNAseq alignments
38654000227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654000228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654000231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654000232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654000234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654000249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654000250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654000251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654000257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000258 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins
38654000259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654000261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654000269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654000271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000302 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654000320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654000332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654000346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000354 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654000356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000361 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654000365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins
38654000366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins
38654000367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654000368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins
38654000369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654000370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654000371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins
38654000372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins
38654000373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins
38654000374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins
38654000375 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
38654000376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins
38654000377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins
38654000379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 138 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 186 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 490 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 329 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654000387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 198 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 357 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000391 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000396 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654000402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654000420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000427 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000446 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000460 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654000462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654000463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654000471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000477 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000492 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000493 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654000498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654000504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654000511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654000514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654000522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000533 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654000534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654000536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000552 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654000562 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654000563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654000564 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000571 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654000577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654000579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000590 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654000633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654000641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654000649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000651 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654000664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654000665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654000666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654000726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654000739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654000801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654000817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654000838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654000849 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654000851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000891 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654000946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654000965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654000969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654000970 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654000971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654000972 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654000974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654000975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654000976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654000977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654000980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654000984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654000988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654000990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654000991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654000992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654000993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000994 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654000995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654000996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654000997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654000999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654001005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654001015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654001016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654001017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654001018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654001020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654001023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654001030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654001031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001038 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001056 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654001068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654001093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654001104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654001105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001240 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654001246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654001264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654001265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654001266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654001267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001283 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654001285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654001297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654001314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654001323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001324 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654001325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654001326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654001350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001359 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654001375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654001376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654001386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654001387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654001388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 18% coverage of the annotated genomic feature by RNAseq alignments
38654001389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654001390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654001397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001399 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654001400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001444 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654001446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654001465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654001475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654001479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 69% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654001490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654001494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001496 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654001509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001531 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654001533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654001541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654001542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654001565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654001574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654001600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001668 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654001671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001674 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654001701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001702 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654001739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654001755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654001759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001772 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654001790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654001800 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654001814 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001837 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001839 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654001840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654001841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654001882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654001883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654001894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001913 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 5% coverage of the annotated genomic feature by RNAseq alignments
38654001915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654001923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654001927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654001932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654001933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654001946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654001953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654001954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654001961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins
38654001967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654001970 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654001971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654001972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654001975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654001977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654001978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654001979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654001980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654001981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654001982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654001983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654001989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654001991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654001993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654001994 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654001995 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654001996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654001997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments
38654001998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654001999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments
38654002003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654002008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments
38654002024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654002027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654002044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002045 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654002046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002047 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654002048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654002056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654002064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654002065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654002067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654002068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002073 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002074 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002076 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654002088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654002093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654002094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654002096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654002111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654002148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654002149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002204 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 4 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654002205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654002221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654002228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654002233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654002315 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654002316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654002320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654002331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654002339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654002351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654002354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654002355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002368 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654002370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654002372 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002379 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002432 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654002440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654002441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002477 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654002478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002480 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654002484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002489 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654002491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654002499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654002508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654002526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654002527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654002529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002563 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002569 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654002571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654002572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654002605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002624 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654002688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654002707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654002725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654002726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654002748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654002769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654002786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654002799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654002800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654002803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654002810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 669 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654002811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 685 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654002812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654002813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 657 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654002863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654002864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654002892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654002894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654002904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002918 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654002939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654002950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002965 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654002966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654002967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654002971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654002982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654002984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654002986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654002992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654002994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654002995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654002996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654002997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654002998 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654002999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003019 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654003024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654003036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003050 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65% coverage of the annotated genomic feature by RNAseq alignments
38654003097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003109 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
38654003122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins
38654003123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654003124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654003162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003164 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654003167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654003184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654003188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654003189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments
38654003193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654003200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654003224 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003226 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654003228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654003229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654003230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654003231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654003242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654003265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003294 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654003303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654003327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654003328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654003345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654003350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654003355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654003358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654003360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654003362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654003387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654003393 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654003394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654003407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654003409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654003416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654003421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 234 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 235 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654003488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003496 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654003515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003524 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654003533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654003535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654003543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654003546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654003553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654003577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003584 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654003608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654003629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654003638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654003645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654003650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654003653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654003696 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654003739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654003743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003744 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654003752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654003779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654003787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654003800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654003804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003828 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654003829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003861 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654003862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654003874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003875 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654003887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654003897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654003909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654003914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003926 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654003927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654003934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654003936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654003950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654003960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654003962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654003965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654003966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654003968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654003969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654003971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654003974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654003975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654003979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654003989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654003992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654003993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654003995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654003996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654003997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654003998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654003999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654004004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654004009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654004042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004084 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004099 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654004100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654004101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654004102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654004109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654004110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004122 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004133 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654004159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654004173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654004181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004185 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654004186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654004205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654004220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004229 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654004232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004239 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
38654004264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004271 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654004274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654004281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654004289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004315 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004320 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654004322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654004323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654004325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654004326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654004332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004336 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004342 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004344 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
38654004377 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654004401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654004426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654004427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654004429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004437 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654004454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 18% coverage of the annotated genomic feature by RNAseq alignments
38654004458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654004461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654004462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 61% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004483 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654004492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654004493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654004527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654004534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654004543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004550 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654004551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004563 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654004652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 117 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654004689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654004690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004703 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654004718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654004721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654004725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654004732 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004740 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654004833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654004834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654004844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654004857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654004874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654004875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004876 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654004877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654004898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004927 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654004951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654004952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654004957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654004960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654004961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654004962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654004966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654004971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654004972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654004973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654004974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654004976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654004977 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654004978 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654004979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654004980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654004982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654004985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654004986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654004987 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654004988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654004989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654004992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654004996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654004997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654004998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654004999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654005015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654005023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654005024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654005025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005038 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005041 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005042 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654005043 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654005044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005046 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654005047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005080 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654005081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005099 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654005100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654005103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654005109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654005126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654005131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654005139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005145 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68% coverage of the annotated genomic feature by RNAseq alignments
38654005158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005167 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654005168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654005181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654005210 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654005230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654005251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60% coverage of the annotated genomic feature by RNAseq alignments
38654005257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654005276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654005277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654005282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654005284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654005298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005314 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005326 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654005331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654005342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654005343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654005347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654005348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005349 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654005351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654005370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005375 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654005387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654005427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005429 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654005431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005464 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654005465 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654005469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654005481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins
38654005482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654005488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654005490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005499 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654005516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005517 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654005518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654005531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654005555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654005556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654005573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654005596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654005608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654005641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654005648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654005653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005681 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654005699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654005732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654005733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654005736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654005760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005764 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005768 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654005770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654005792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654005793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005805 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654005822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654005824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654005828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654005831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
38654005842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654005846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654005847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654005870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654005874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654005902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005906 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654005935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005956 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654005957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654005971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654005972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654005974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654005975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654005978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654005982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654005984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654005986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654005987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654005989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654005990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654005991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654005992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654005993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654005996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654005997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654005998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654005999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654006000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654006002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654006013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654006045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654006048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84% coverage of the annotated genomic feature by RNAseq alignments
38654006061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654006125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654006130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654006142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654006155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006161 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
38654006181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006209 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654006229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654006230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006235 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654006241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654006242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654006243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654006307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654006315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654006316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654006317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654006318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654006319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins
38654006321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006341 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 6 bases in 3 codons; deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654006342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654006359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006416 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654006421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006422 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654006423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654006453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654006489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins
38654006491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654006492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654006500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006523 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654006567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006572 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654006578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654006579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654006583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006585 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654006586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654006596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654006599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006612 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654006614 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654006620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 234 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006652 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654006695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006700 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654006702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654006703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654006705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006769 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006801 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006807 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654006808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006812 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654006814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654006815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654006816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654006817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654006820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654006821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654006822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654006837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654006839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006860 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654006862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654006865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654006867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 8% coverage of the annotated genomic feature by RNAseq alignments
38654006868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654006883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654006904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654006906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654006910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654006920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654006924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654006925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654006949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654006965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654006969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654006972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654006974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654006975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654006979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654006984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654006987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654006990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654006991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654006994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654006995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654006997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654006998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654006999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654007004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007010 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007027 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654007028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007052 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654007100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654007101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654007105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007114 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654007115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654007178 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007184 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007196 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654007203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007218 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654007219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654007224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654007225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654007266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654007267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654007269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654007293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654007329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654007332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007341 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007364 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654007370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654007371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654007398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654007431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007438 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 4 bases in 4 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654007439 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654007440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007444 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654007445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654007446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 569 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007486 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654007489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654007495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007536 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56% coverage of the annotated genomic feature by RNAseq alignments
38654007547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007552 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007556 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654007565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654007566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654007568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654007575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654007585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654007597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007598 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007602 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins
38654007606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654007611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654007618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654007619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654007620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654007621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654007622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654007647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654007657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654007688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654007689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654007690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654007691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654007692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654007711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654007713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007716 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654007718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654007723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007730 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007746 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654007747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654007757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 6% coverage of the annotated genomic feature by RNAseq alignments
38654007758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007761 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654007777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007781 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654007793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654007795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654007796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654007806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654007812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654007813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654007814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654007823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654007827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007837 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654007838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654007839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654007843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654007863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007880 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654007891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654007907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654007909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654007938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654007941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654007949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654007962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654007967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654007970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654007976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654007982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654007985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654007986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654007987 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654007988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654007991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654007993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654007995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654007996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654007997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654007998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654007999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654008012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654008040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654008078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008079 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654008086 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654008087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008097 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654008111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008113 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008135 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654008139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654008140 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654008141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008144 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654008155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654008162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654008179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654008180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008190 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654008191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654008192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008224 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008232 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654008236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654008237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654008261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654008262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654008328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008337 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654008338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654008343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008351 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 157 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654008364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654008367 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654008369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008387 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654008388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654008415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008443 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008504 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654008505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654008509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654008515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008517 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008561 Derived by automated computational analysis using gene prediction method: BestRefSeq.
38654008562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654008570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654008593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654008648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 421 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 421 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 419 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008676 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008707 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008708 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654008710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654008711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 18% coverage of the annotated genomic feature by RNAseq alignments
38654008731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654008777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654008780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008784 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654008785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654008786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 10% coverage of the annotated genomic feature by RNAseq alignments
38654008788 The RefSeq transcript has 6 substitutions compared to this genomic sequence; Derived by automated computational analysis using gene prediction method: BestRefSeq.
38654008789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654008790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654008804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654008810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008832 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654008835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654008870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654008871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008872 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654008876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654008877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008892 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654008910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654008911 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654008912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654008939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654008940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654008941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654008965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654008970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654008974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654008976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654008988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654008989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654008991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654008992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654008993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654008997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654008998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654008999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654009036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654009038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009046 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654009047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654009048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009050 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654009060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654009072 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654009073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009086 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654009110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654009111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654009127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654009128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654009129 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654009130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654009132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654009133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009134 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654009135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654009150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
38654009156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654009163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654009167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654009204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654009212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654009216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654009217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654009229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654009233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654009234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654009249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654009257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654009266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654009277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654009279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654009320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654009365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654009375 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654009376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
38654009403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654009450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654009478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654009496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654009500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654009501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009507 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654009508 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654009529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654009530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654009531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009544 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654009545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654009570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654009572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654009578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654009583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654009587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654009610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009612 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments
38654009614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654009663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654009673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654009676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654009717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654009718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654009719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654009727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654009732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654009759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654009769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68% coverage of the annotated genomic feature by RNAseq alignments
38654009770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654009773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654009815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654009820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654009821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654009822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654009850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654009855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 581 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654009857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654009858 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654009875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
38654009877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654009878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654009890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654009898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654009912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654009914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654009915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654009916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654009919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654009920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654009921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654009922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 10% coverage of the annotated genomic feature by RNAseq alignments
38654009941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654009942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654009958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654009959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654009961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654009963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654009964 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654009965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654009966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654009967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654009994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654009999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654010022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654010023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654010053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654010055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654010067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654010068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010102 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010103 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654010105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654010110 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654010125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010128 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654010140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654010160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654010161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 228 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654010177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654010183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654010184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654010189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010208 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654010209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654010216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654010231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654010238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 17% coverage of the annotated genomic feature by RNAseq alignments
38654010242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010255 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 534 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 142 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 472 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010261 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 236 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 299 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 299 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 298 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 298 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 298 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 300 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 299 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 299 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 298 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 247 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654010276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654010277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654010278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654010280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654010281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 585 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654010313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654010324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010349 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
38654010421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654010426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654010458 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84% coverage of the annotated genomic feature by RNAseq alignments
38654010476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83% coverage of the annotated genomic feature by RNAseq alignments
38654010477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654010484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654010497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654010498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010513 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654010514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654010527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654010528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654010546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654010547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654010548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654010566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654010568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010584 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654010589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010610 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010649 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654010651 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654010667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654010668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654010688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654010689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654010719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
38654010721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
38654010722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654010731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654010733 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654010734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654010741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654010747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654010748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010751 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654010753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654010759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654010777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654010778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654010779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
38654010780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654010783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654010794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654010795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654010809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654010810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654010827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654010832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654010839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654010858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654010863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654010869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654010873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654010880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654010895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654010896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654010905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
38654010906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654010916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654010925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654010933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010942 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654010946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654010947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654010968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654010970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654010972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654010973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654010980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654010982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654010983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654010985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654010986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654010987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654010988 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654010989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654010990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654010996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654010997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654010999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins
38654011001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654011041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654011046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654011050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654011051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011061 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654011070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654011081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011083 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011103 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654011112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011126 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011135 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654011136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011147 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654011150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654011164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011171 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654011200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654011201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654011202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011213 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654011215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654011228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71% coverage of the annotated genomic feature by RNAseq alignments
38654011231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654011253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654011254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78% coverage of the annotated genomic feature by RNAseq alignments
38654011268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654011294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654011296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654011308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654011309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654011311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011312 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654011313 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 219 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 225 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 225 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 225 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654011366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654011367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654011395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011398 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654011401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011403 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654011404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654011405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654011413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654011416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654011425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654011426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654011427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654011449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011456 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654011458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654011463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011474 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654011486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011489 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654011491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654011499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654011513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins
38654011523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654011524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654011525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654011533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654011536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654011588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654011597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654011598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654011620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654011621 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654011623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654011651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654011691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654011703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654011711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654011716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654011738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654011739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011755 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654011756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011765 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654011766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654011767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654011768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654011770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654011771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011802 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654011803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654011806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654011810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654011811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654011812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 6% coverage of the annotated genomic feature by RNAseq alignments
38654011813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654011814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
38654011815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654011816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654011820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011821 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654011822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654011830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654011853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654011855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654011856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654011857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654011869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654011877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654011879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654011925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654011943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654011944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654011946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654011950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654011957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654011967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654011968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654011978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654011980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654011981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654011984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654011985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654011987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654011989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654011990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654011992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654011998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654011999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654012023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654012033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654012049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 641 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654012101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012108 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654012109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012140 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments
38654012161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012164 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012175 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654012183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 132 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 132 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 132 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 121 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654012197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012229 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012237 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654012238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654012260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
38654012275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012302 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012313 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012324 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654012326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654012329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654012372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654012380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012389 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654012394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654012401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654012402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654012411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012455 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654012475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012477 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654012498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012511 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654012520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 17% coverage of the annotated genomic feature by RNAseq alignments
38654012521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
38654012522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654012524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012527 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654012540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654012541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654012555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654012561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654012609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012651 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654012667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654012712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654012735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654012737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654012749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654012750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654012770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654012772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654012773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654012777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654012789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654012790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654012791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654012792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012801 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654012802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654012804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012813 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654012834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654012839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654012844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012870 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654012871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654012878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654012879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654012881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654012898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654012920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654012921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654012929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012931 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654012932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654012933 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654012934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654012935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
38654012936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012937 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654012951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654012952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins
38654012953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654012961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654012966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654012971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654012979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654012981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654012983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654012985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654012986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654012988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654012989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654012994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654012995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654012996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654012997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654012998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654012999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013000 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013001 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
38654013003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654013024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654013038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654013039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654013040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654013046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013063 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654013072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654013092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654013103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654013106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654013117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654013120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654013141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654013156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654013195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68% coverage of the annotated genomic feature by RNAseq alignments
38654013206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654013207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654013214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654013215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013227 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013268 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654013293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654013296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654013309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013333 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
38654013336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
38654013355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654013356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654013380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654013394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654013399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654013437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013444 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654013453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654013488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654013493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654013496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654013497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654013506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654013511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654013523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013560 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654013582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654013606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654013609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654013614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013680 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013720 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013751 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654013752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 286 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654013787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654013810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654013818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654013819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654013820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654013835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654013838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654013842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654013853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654013873 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654013912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654013916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654013923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80% coverage of the annotated genomic feature by RNAseq alignments
38654013929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654013934 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654013935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654013941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654013949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654013952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654013964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654013968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654013969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013970 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654013971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654013972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654013973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654013978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654013979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654013981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654013983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654013986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654013991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654013997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654013999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014031 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014032 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654014033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654014034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654014055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014096 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654014105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014112 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654014113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654014118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
38654014126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014147 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654014148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654014156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654014176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654014185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654014197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654014226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654014231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654014241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014248 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
38654014254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654014260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654014277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654014297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654014298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654014300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654014301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654014302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
38654014303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654014304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654014305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654014306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
38654014307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654014308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654014309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654014310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654014311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654014312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654014313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
38654014314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654014315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654014316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654014317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654014318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654014319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654014320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654014321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654014322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654014323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654014324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654014325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654014326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654014327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654014328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654014329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654014330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654014331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654014332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654014359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654014366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014370 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654014376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654014377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654014383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014394 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654014433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654014435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014455 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654014456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 146 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 129 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 124 Proteins
38654014461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654014462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 106 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654014463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654014464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 105 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654014466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins
38654014467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654014468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654014469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654014474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014481 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014514 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654014525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654014534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
38654014548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014556 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654014569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014588 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654014653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654014679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654014749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014752 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654014762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57% coverage of the annotated genomic feature by RNAseq alignments
38654014763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654014767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654014792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 584 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014793 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654014796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654014819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654014825 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654014826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654014836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654014840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654014841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654014857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654014858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654014859 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654014860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654014871 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654014874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654014875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654014895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654014908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654014909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654014914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654014956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654014958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654014965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654014966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654014967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654014970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654014973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654014986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654014990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654014991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654014992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654014993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654014994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654014995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654014996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
38654014997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654014998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654014999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015004 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654015014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654015015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654015016 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 41% coverage of the annotated genomic feature by RNAseq alignments
38654015017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015023 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654015027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015029 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654015030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654015037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654015048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654015056 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654015102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654015123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654015145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654015146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654015147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654015148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015155 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: added 83 bases not found in genome assembly; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 18 Proteins
38654015156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins
38654015157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654015170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015180 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654015195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
38654015210 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 15% coverage of the annotated genomic feature by RNAseq alignments
38654015211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654015212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654015213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654015215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654015216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654015217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654015231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654015252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654015264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 6% coverage of the annotated genomic feature by RNAseq alignments
38654015267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654015290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654015325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015335 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654015336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654015341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654015363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654015367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015372 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015379 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654015381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015390 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654015404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654015415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654015430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654015447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654015448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654015454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654015462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015505 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654015509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654015510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654015511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654015512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015528 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654015529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654015576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654015577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015582 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 4 bases in 3 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654015584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654015585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654015609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654015611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654015612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015613 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654015614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654015653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015672 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015673 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015684 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654015685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654015688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654015716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654015767 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
38654015782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654015784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654015804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015812 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015843 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654015844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65% coverage of the annotated genomic feature by RNAseq alignments
38654015845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59% coverage of the annotated genomic feature by RNAseq alignments
38654015846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654015847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 202 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654015885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654015888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015891 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654015900 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654015901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654015902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654015912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654015920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654015928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654015943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654015946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654015955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015962 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654015964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654015969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654015973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654015985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654015986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654015988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654015989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654015992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654015994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654015996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654015997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654015998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654015999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654016003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654016008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654016009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654016010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016011 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654016012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654016024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654016040 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654016043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654016044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654016045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654016047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016052 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016056 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654016057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654016065 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654016067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654016068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654016069 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654016072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654016073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016085 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654016086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654016093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654016103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016110 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654016119 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654016120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016186 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654016187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654016189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654016192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
38654016193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016222 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654016235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016236 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654016244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654016263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654016265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016302 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016326 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654016345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654016380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654016385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016386 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654016387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654016388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654016391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments
38654016400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654016431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016459 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 22% coverage of the annotated genomic feature by RNAseq alignments
38654016460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654016486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654016497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654016513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654016514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654016581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654016599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654016600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 76 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654016687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016741 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654016742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654016771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654016784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654016786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016787 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654016788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654016818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016820 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016822 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654016823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74% coverage of the annotated genomic feature by RNAseq alignments
38654016831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654016849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654016856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins
38654016858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016872 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654016889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654016907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016923 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654016927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654016939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654016949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654016951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654016957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654016965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654016966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654016969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654016971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654016973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654016974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654016978 The RefSeq transcript aligns at 98% coverage compared to this genomic sequence; Derived by automated computational analysis using gene prediction method: BestRefSeq.
38654016979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654016980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654016981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654016986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654016988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654016990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 41% coverage of the annotated genomic feature by RNAseq alignments
38654016991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654016992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654016993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654016998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654016999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654017000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654017013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66% coverage of the annotated genomic feature by RNAseq alignments
38654017014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654017041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654017047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654017048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654017057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654017058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654017059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654017078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654017083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
38654017115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654017116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654017137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654017148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654017149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654017156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654017160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 234 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017166 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017167 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654017169 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654017170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017187 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654017189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654017190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017213 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654017233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017235 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 201 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654017240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017248 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654017258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654017259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654017291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654017308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654017310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654017319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 531 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 348 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 540 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654017323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654017326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 546 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017328 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654017329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 193 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 533 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 456 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654017333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654017335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 355 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654017337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 356 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 113 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 355 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 499 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017349 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654017350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 180 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017373 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654017375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017383 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017386 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654017390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654017404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654017431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017453 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654017458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654017481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654017549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654017650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654017654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654017655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89% coverage of the annotated genomic feature by RNAseq alignments
38654017659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017663 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654017668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017674 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654017707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654017708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654017731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654017735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654017760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments
38654017771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654017776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654017822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654017851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654017855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017856 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654017860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017866 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654017880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654017881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654017882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654017893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017899 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654017902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017939 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654017945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654017958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654017967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654017968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654017971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654017972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654017975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654017976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654017982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654017983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654017985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654017988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654017989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654017990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654017993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654017995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654017996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
38654017997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654017998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654017999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018019 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654018034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654018061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654018065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018069 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654018102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018129 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018132 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654018134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018136 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654018137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654018176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018179 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654018204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654018230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654018234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654018246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84% coverage of the annotated genomic feature by RNAseq alignments
38654018274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654018275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654018276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018285 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018286 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654018308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018340 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
38654018365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 2 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654018407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654018413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654018414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654018418 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654018420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654018421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654018435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654018442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654018444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654018448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018462 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654018524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654018525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654018537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654018539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 10% coverage of the annotated genomic feature by RNAseq alignments
38654018540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654018541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654018542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654018545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654018546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018551 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018552 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654018554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654018570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654018626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654018689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654018709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654018710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654018747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654018748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654018752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654018773 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 214 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654018786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018799 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654018801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 73 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654018802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654018803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
38654018804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins
38654018805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654018845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654018846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654018847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654018861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654018864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69% coverage of the annotated genomic feature by RNAseq alignments
38654018865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654018900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654018904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654018908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654018909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018912 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654018918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654018933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654018935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654018958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654018959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018967 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654018968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654018969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654018970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654018971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654018975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654018977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654018982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654018983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654018987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654018989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654018990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654018991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654018992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654018993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654018994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654018995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654018997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654018998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654018999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654019002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019005 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019007 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654019017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654019024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019026 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654019027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019031 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 153 Proteins
38654019032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments
38654019044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654019050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654019051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654019083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins
38654019098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654019100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019102 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019108 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654019122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654019123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654019154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654019155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654019175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019188 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654019190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654019205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654019206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654019207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654019213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins
38654019215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654019216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654019218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654019219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654019220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654019221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654019222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654019249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654019294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019320 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 5% coverage of the annotated genomic feature by RNAseq alignments
38654019331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654019351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019354 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654019366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654019367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654019374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654019377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
38654019382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654019401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654019431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 41% coverage of the annotated genomic feature by RNAseq alignments
38654019432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654019434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654019435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654019439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654019443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654019447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654019448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654019466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654019512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654019515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019520 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019521 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654019522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654019525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019527 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654019528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019529 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654019530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654019580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654019581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654019582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654019584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019623 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019639 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654019641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654019642 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654019643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654019644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019648 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654019651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654019684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654019720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654019752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654019763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654019767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019775 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654019776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
38654019809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654019823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654019860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 168 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654019861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654019864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654019880 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654019881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654019902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654019903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 33% coverage of the annotated genomic feature by RNAseq alignments
38654019905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654019910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654019911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654019912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654019914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654019920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654019928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
38654019932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654019940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654019962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654019974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654019976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654019977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019979 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654019980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654019983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654019985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654019986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654019987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654019988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654019990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654019994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654019995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654019996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654019997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654019998 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654019999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654020000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020004 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654020011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654020013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
38654020019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654020023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654020029 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020034 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 7 bases in 5 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020051 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654020096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654020097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654020114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654020115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654020116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654020117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020122 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654020129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020158 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654020179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020196 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654020197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020266 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654020273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654020277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654020278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654020302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020303 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020314 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654020324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654020325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654020326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654020329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020352 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654020355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654020368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654020373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654020374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654020396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654020400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654020403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020413 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654020414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80% coverage of the annotated genomic feature by RNAseq alignments
38654020430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654020451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654020460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654020461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654020462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020498 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654020499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654020500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654020501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654020523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654020530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654020532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654020533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 22% coverage of the annotated genomic feature by RNAseq alignments
38654020534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72% coverage of the annotated genomic feature by RNAseq alignments
38654020535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654020538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654020539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654020547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654020556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654020557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654020558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
38654020565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654020614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654020618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654020619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020626 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654020636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654020649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654020656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654020660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654020676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654020677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 17% coverage of the annotated genomic feature by RNAseq alignments
38654020684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654020694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654020705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020709 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 10% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654020728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654020791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020819 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654020820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654020823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654020836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654020840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654020845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654020869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654020871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654020873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654020874 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654020876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020880 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654020882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654020887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654020892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654020897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654020898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654020904 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020905 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654020911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654020919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654020923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654020924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654020937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654020941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654020942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654020951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654020956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654020957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654020969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654020970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654020971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020981 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654020982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654020988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654020992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654020994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654020995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654020997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654020998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654020999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654021020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654021022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021026 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654021040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments
38654021041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654021056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654021115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021132 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021148 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021153 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654021155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021156 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: added 237 bases not found in genome assembly; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, and 77% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654021159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654021183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654021201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654021202 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654021204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 3% coverage of the annotated genomic feature by RNAseq alignments
38654021205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654021223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 2% coverage of the annotated genomic feature by RNAseq alignments
38654021237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654021262 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654021263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021267 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654021280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654021297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654021307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments
38654021309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654021340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654021344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654021367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654021398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91% coverage of the annotated genomic feature by RNAseq alignments
38654021403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654021413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654021425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654021426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654021427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021474 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654021479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654021481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654021489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654021490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021492 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654021493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654021515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654021516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654021517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654021518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654021519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654021560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654021575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52% coverage of the annotated genomic feature by RNAseq alignments
38654021583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654021584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654021592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654021593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021594 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654021595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654021596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654021598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021608 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021646 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654021651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654021652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654021653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654021654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654021668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
38654021669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654021691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654021695 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654021697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021743 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654021761 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654021763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654021765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021770 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654021772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654021773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021778 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021790 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654021796 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021820 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654021827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654021829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654021831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654021835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654021836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56% coverage of the annotated genomic feature by RNAseq alignments
38654021837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654021846 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021847 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654021848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654021860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654021871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654021877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 82% coverage of the annotated genomic feature by RNAseq alignments
38654021881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654021882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654021891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654021893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654021899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021902 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654021908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021928 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654021930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654021934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654021945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654021963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654021964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654021965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654021970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654021971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654021976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654021977 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654021978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654021979 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654021981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654021982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654021983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654021984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654021985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654021986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654021989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654021990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654021994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654021995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654021996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654021997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654021998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654021999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654022092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654022093 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654022104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654022137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654022139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654022147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654022165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654022166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654022167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654022174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654022186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654022192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins
38654022195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022201 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments
38654022204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654022221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
38654022239 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022240 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654022243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022244 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654022248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022257 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 15% coverage of the annotated genomic feature by RNAseq alignments
38654022267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022296 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654022312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654022344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654022352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654022363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022447 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654022448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654022450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654022476 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022486 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654022487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654022495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654022509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654022530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654022534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654022540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654022547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654022550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654022551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654022580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654022582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654022600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654022700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654022717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654022719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 336 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 334 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022734 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654022738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654022746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022747 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654022757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654022758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654022770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022791 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654022792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654022822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022824 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654022845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654022858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022859 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654022866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654022871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654022873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654022874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654022876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654022877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654022885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654022905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654022906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022930 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654022942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654022957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654022958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654022962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654022964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654022965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654022975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654022977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654022979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654022980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654022982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654022983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654022984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654022985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654022991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654022996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654022997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654022998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654022999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023004 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654023008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654023009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654023010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654023019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654023057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654023060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654023089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654023090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654023141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654023154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654023155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654023157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins
38654023158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654023159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654023171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654023177 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654023198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023203 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654023241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654023245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654023248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654023249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
38654023252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
38654023253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654023265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023295 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654023305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654023342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654023360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654023361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654023362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654023363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654023368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654023383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023389 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654023391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654023401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654023403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654023404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023437 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654023453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654023459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654023460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654023461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654023475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023490 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
38654023522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654023554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654023556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023583 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654023597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654023600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654023632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654023633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654023665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023679 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654023680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023682 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654023683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023710 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023717 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654023720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654023739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654023781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
38654023786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654023795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654023800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654023801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654023812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654023815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654023820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654023832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654023835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023836 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654023849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654023861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654023863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023896 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654023897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654023900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023907 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654023908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023933 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654023934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654023941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654023943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654023945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654023946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654023948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654023949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 50% coverage of the annotated genomic feature by RNAseq alignments
38654023969 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654023970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654023971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654023976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654023982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654023991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654023992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654023993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023994 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654023995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654023997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654023998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654023999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024000 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654024001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024006 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654024022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654024048 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024050 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654024073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 41% coverage of the annotated genomic feature by RNAseq alignments
38654024097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654024099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
38654024115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654024117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654024134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654024136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024204 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024220 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024235 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654024236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654024259 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654024261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654024265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654024266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654024268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654024271 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654024279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024302 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024312 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654024313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024323 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024333 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654024360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654024375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 10% coverage of the annotated genomic feature by RNAseq alignments
38654024376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654024380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 18% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654024410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654024430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654024431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024452 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654024458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80% coverage of the annotated genomic feature by RNAseq alignments
38654024459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654024460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
38654024461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins
38654024462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins
38654024463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins
38654024464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins
38654024465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77% coverage of the annotated genomic feature by RNAseq alignments
38654024468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654024480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024506 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654024511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654024556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654024559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654024570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654024593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654024619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654024634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024649 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654024651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024654 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654024683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654024684 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024711 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins
38654024714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654024739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654024742 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654024759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654024761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654024810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024813 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654024837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments
38654024849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments
38654024850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654024851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654024855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654024856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024887 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024890 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654024898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654024899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654024906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654024907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654024924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654024931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654024935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654024939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654024950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654024954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024956 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654024966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654024970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654024972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654024974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654024981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654024987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654024988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654024990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654024991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654024992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654024993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654024994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654024995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654024996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654024997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654024998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654024999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025010 Derived by automated computational analysis using gene prediction method: BestRefSeq.
38654025011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654025016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
38654025018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654025021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654025035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025048 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654025076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025098 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654025099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025105 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025112 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654025113 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 5% coverage of the annotated genomic feature by RNAseq alignments
38654025116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025120 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654025125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654025137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654025142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654025158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025174 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654025190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025199 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025205 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 41% coverage of the annotated genomic feature by RNAseq alignments
38654025207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654025231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654025274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654025278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654025313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654025316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654025317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 341 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 260 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654025339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654025363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654025371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025382 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654025387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654025404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654025406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654025430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654025451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025457 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654025461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654025510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654025512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments
38654025513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654025533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025542 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654025556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654025580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654025585 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025586 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654025608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025609 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654025623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654025647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654025648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025652 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654025653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025654 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654025694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654025698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025721 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654025727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654025728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654025730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654025731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025741 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654025746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654025757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654025770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654025772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 192 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654025796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654025797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654025798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025799 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654025800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654025801 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654025803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654025818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
38654025837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025853 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025874 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654025875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025877 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654025879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025881 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654025903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654025925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654025935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025942 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654025952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654025958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654025960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654025961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654025964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654025972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654025976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654025978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 51 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654025982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654025983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654025984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654025986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654025988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654025989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654025990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654025991 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654025993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
38654025994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654025995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
38654025996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins
38654025997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654025998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins
38654025999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
38654026000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654026001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654026011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026012 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654026039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654026074 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654026076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026093 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
38654026104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654026124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654026126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654026137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654026138 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026139 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654026140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654026188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654026197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026217 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654026219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026226 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026227 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654026235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026244 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654026333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654026339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026341 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654026342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654026346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654026354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654026372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654026374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654026376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026392 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654026393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654026394 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654026396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026400 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654026431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026442 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654026452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026454 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026470 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654026472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments
38654026479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654026519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654026521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654026568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654026570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654026581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654026591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654026592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654026608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654026609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654026610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654026611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654026613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654026614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654026632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654026640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026646 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654026648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026649 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026696 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654026698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654026699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654026705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654026711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654026712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026732 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654026771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654026772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654026773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026774 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654026781 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654026782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
38654026788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026789 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026796 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654026798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654026799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654026809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654026811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 35% coverage of the annotated genomic feature by RNAseq alignments
38654026816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654026817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654026824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654026827 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654026836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654026837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654026838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
38654026839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654026862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654026868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026879 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654026881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654026882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654026884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654026894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654026898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654026917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654026921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654026922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654026923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
38654026939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654026941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654026942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654026945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654026951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654026963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654026967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026969 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654026973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654026975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654026976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 77% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654026985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654026987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654026988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654026991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654026994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654026995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654026998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654026999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654027019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654027029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654027030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654027039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654027065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654027066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654027068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654027082 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027089 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654027107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027114 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027124 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654027125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027138 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027143 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654027144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654027180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654027190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027202 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654027230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654027231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654027233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654027234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654027237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027247 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654027256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654027265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654027266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654027316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654027330 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654027331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654027335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654027372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654027374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 42% coverage of the annotated genomic feature by RNAseq alignments
38654027375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86% coverage of the annotated genomic feature by RNAseq alignments
38654027376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654027377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 6% coverage of the annotated genomic feature by RNAseq alignments
38654027385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81% coverage of the annotated genomic feature by RNAseq alignments
38654027386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654027391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654027403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654027408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027409 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654027410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027418 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654027419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654027420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654027438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654027480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
38654027498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654027523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654027532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654027556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654027564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654027565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027583 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654027585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654027625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654027630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027638 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654027639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 24% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027686 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654027693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654027725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654027726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027731 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654027733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654027734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027735 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654027736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654027738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654027746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654027747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
38654027770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654027779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654027815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027836 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654027879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654027880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654027891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654027899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654027900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654027918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654027920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027924 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654027927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654027933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654027952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654027957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027962 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654027973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654027978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654027979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654027981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654027987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654027988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654027990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654027991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654027992 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654027993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654027994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654027996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654027997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654027998 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654027999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 22% coverage of the annotated genomic feature by RNAseq alignments
38654028001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 77 Proteins
38654028041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654028094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028129 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654028165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654028172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028188 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654028190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654028199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654028220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028235 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654028254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654028264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654028272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654028273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654028274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654028275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654028276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654028277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 20% coverage of the annotated genomic feature by RNAseq alignments
38654028281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654028282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654028305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins
38654028317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins
38654028318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments
38654028320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654028363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654028364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028376 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654028377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62% coverage of the annotated genomic feature by RNAseq alignments
38654028379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654028380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654028381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654028394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654028395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028403 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654028417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654028418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654028419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654028423 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654028452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654028453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654028456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654028462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654028465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654028469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028472 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654028473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654028482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 12% coverage of the annotated genomic feature by RNAseq alignments
38654028484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654028485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654028486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028506 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654028531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654028550 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028571 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 143 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654028575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 138 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments
38654028576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 126 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654028617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028622 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028623 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028641 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654028665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654028666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654028667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028703 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654028708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028719 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654028728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654028731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
38654028734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654028735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654028736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654028740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 46 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654028750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028753 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028754 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654028761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028782 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654028783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654028784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028785 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654028787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028804 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028808 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654028826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654028827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654028828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654028845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654028846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654028848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654028849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654028850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654028851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654028858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654028859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654028860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028869 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654028876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654028877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028880 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654028884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654028889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654028890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654028891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654028913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654028916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654028926 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028929 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654028945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654028947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654028964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654028966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654028967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654028971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654028972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654028974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65% coverage of the annotated genomic feature by RNAseq alignments
38654028978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654028979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654028980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654028981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654028986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654028990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654028992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654028994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654028995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654028996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654028997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654028999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654029000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029041 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654029042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654029043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654029046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654029047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins
38654029050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654029051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654029093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029100 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 121 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654029104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654029105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029121 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654029123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029125 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029126 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654029127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654029142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029151 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654029158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654029159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654029170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654029189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 15% coverage of the annotated genomic feature by RNAseq alignments
38654029210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029211 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 5 bases in 4 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 6% coverage of the annotated genomic feature by RNAseq alignments
38654029212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654029222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654029240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654029247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63% coverage of the annotated genomic feature by RNAseq alignments
38654029262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029263 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029271 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654029274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654029282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029288 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
38654029310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654029312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654029326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654029327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654029346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654029351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 274 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 274 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654029399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
38654029403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029404 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654029413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029424 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654029439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654029444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments
38654029465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654029488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029490 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654029491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654029502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654029506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029515 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654029516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654029541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654029555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029560 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654029566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654029567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654029576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654029602 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654029610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029624 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654029625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654029633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654029634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 4% coverage of the annotated genomic feature by RNAseq alignments
38654029635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 104 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654029638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029644 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654029646 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654029647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654029648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654029663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654029664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029677 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029678 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654029680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654029697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654029698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029709 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654029710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029722 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654029723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654029729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654029732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654029734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654029737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654029739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654029741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61% coverage of the annotated genomic feature by RNAseq alignments
38654029742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654029743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654029745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654029746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029752 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 280 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 279 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 266 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 242 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654029762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654029763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 281 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 146 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 277 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 263 Proteins
38654029768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654029769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654029770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins
38654029771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654029772 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654029773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 191 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 191 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 138 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654029783 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654029785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654029786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654029787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654029790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
38654029791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029802 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654029818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654029836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654029841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029847 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029870 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654029882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654029884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654029891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654029892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins
38654029895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 27% coverage of the annotated genomic feature by RNAseq alignments
38654029896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029897 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654029899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654029900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654029901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654029928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654029947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654029956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654029963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654029966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654029968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029970 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654029975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654029979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654029985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654029990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654029991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654029992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654029993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments
38654029994 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654029996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654029997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654029999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654030000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654030034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654030036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030046 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins
38654030048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins
38654030049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 Proteins
38654030050 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654030051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654030052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654030053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654030054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654030055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
38654030056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654030057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654030059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654030060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654030061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654030062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654030063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654030065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
38654030066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins
38654030067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
38654030068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins
38654030069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654030070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
38654030071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654030072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654030073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins
38654030074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654030075 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654030076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654030080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins
38654030081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654030082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654030083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654030084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654030085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
38654030100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654030110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030117 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654030122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654030124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654030127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654030138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654030143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654030144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030162 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 4 bases in 3 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 6% coverage of the annotated genomic feature by RNAseq alignments
38654030163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654030169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654030190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654030193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654030194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654030195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654030196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654030197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654030198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654030199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments
38654030218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030235 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654030238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030247 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654030248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030277 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654030292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654030293 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 69% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654030297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 110 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 7% coverage of the annotated genomic feature by RNAseq alignments
38654030300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins
38654030301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 136 Proteins
38654030302 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 176 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654030303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 142 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 173 Proteins
38654030305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 173 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61% coverage of the annotated genomic feature by RNAseq alignments
38654030307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654030308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 149 Proteins
38654030309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 138 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 156 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 143 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654030312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654030313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654030319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654030324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654030337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654030382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030408 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654030409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654030412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654030424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 147 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 147 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654030440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654030441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654030442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654030444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030448 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030455 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654030456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654030482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030489 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654030491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654030492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654030493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654030494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654030495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654030521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 10% coverage of the annotated genomic feature by RNAseq alignments
38654030539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030543 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654030550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654030551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 13% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 43% coverage of the annotated genomic feature by RNAseq alignments
38654030568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654030571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654030572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654030582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030592 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments
38654030593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654030594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030598 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030599 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654030606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654030607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654030618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654030619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030620 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030633 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654030634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654030645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654030650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654030651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654030668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654030672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030684 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654030685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654030686 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030702 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654030703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654030704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654030710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654030711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654030719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654030722 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 54% coverage of the annotated genomic feature by RNAseq alignments
38654030723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654030734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654030736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030737 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654030738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654030739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030751 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654030785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654030791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030798 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030800 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654030801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 269 Proteins, and 24% coverage of the annotated genomic feature by RNAseq alignments
38654030803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 174 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654030804 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654030806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654030809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins
38654030810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 81 Proteins
38654030811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins
38654030812 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins
38654030813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins
38654030814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030816 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins
38654030817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 72 Proteins
38654030818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654030819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 121 Proteins
38654030820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 104 Proteins
38654030821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins
38654030822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99 Proteins
38654030823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins
38654030824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins
38654030825 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins
38654030826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins
38654030827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins
38654030828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 43 Proteins
38654030829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654030830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 103 Proteins
38654030831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins
38654030832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 113 Proteins
38654030833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654030834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654030835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654030873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654030874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 63% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654030942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654030946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654030952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654030959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654030971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654030972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654030973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654030975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654030976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 17% coverage of the annotated genomic feature by RNAseq alignments
38654030981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654030982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654030983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654030985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654030987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654030990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654030991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654030992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654030993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654030994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654030995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654030997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654030998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654030999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 37% coverage of the annotated genomic feature by RNAseq alignments
38654031001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031008 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654031025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654031026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031028 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654031029 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins
38654031030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins
38654031031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
38654031032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
38654031033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins
38654031034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 285 Proteins
38654031035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 207 Proteins
38654031036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 169 Proteins
38654031037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 189 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031038 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654031039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 330 Proteins
38654031040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins
38654031041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 355 Proteins
38654031042 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 345 Proteins
38654031043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 264 Proteins
38654031044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95 Proteins
38654031045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins
38654031046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88 Proteins
38654031047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 155 Proteins
38654031048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 460 Proteins
38654031049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 460 Proteins
38654031050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 334 Proteins
38654031051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654031052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 264 Proteins
38654031053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 203 Proteins
38654031054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 440 Proteins
38654031055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 381 Proteins
38654031056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins
38654031057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031058 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 102 Proteins
38654031059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 165 Proteins
38654031060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 224 Proteins
38654031061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 312 Proteins
38654031062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 312 Proteins
38654031063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins
38654031064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
38654031065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 101 Proteins
38654031066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 352 Proteins
38654031067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 377 Proteins
38654031068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 264 Proteins
38654031069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins
38654031070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins
38654031071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
38654031072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 414 Proteins
38654031073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 265 Proteins
38654031074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins
38654031075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
38654031076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 56 Proteins
38654031077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
38654031079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 41% coverage of the annotated genomic feature by RNAseq alignments
38654031080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
38654031151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031156 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031157 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031158 Derived by automated computational analysis using gene prediction method: BestRefSeq.
38654031159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654031161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654031202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654031203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 4% coverage of the annotated genomic feature by RNAseq alignments
38654031206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654031207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654031208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
38654031209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654031213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654031214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031216 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031246 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654031305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654031311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654031331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654031344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654031351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654031354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031377 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654031378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654031379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031381 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654031382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654031383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654031391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031401 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654031402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654031438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654031439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031443 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654031467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654031521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments
38654031532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031533 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654031535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654031537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654031539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89% coverage of the annotated genomic feature by RNAseq alignments
38654031543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654031546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63% coverage of the annotated genomic feature by RNAseq alignments
38654031550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
38654031551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654031552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654031554 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654031566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 56% coverage of the annotated genomic feature by RNAseq alignments
38654031595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654031617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654031621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654031622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654031623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
38654031625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654031626 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654031627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654031631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654031638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654031639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031643 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654031644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654031645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031650 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654031652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69% coverage of the annotated genomic feature by RNAseq alignments
38654031653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654031654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654031655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654031657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031659 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654031660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654031663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031671 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654031673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031678 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031687 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031688 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031689 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654031693 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654031695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654031699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654031705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654031754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031762 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654031764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654031766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654031767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654031781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 38% coverage of the annotated genomic feature by RNAseq alignments
38654031797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
38654031815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654031860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins
38654031862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
38654031864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 75 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654031865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 99% coverage of the annotated genomic feature by RNAseq alignments
38654031866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654031867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654031886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 85% coverage of the annotated genomic feature by RNAseq alignments
38654031887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031914 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031922 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031926 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 68% coverage of the annotated genomic feature by RNAseq alignments
38654031927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins
38654031928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 50 Proteins
38654031929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins
38654031930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654031932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654031937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654031940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654031941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654031951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031958 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654031960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654031961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654031964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654031965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654031967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654031970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654031980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654031982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654031983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654031985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654031988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654031989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654031990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654031993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654031995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654031996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654031997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654031998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654031999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654032014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 61 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 121 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 130 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 115 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 115 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 107 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654032024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 124 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654032050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654032061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654032077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97% coverage of the annotated genomic feature by RNAseq alignments
38654032082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654032084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654032094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654032097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654032099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032121 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654032125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032127 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654032129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654032141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032147 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654032148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654032155 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654032157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654032178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654032179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654032180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654032186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032197 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654032198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654032238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 78 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654032259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654032265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654032279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 70 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032285 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654032297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032308 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654032310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654032314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654032342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654032348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654032350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032374 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032375 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032376 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654032390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032428 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654032433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654032479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654032481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654032527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 52 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032546 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654032604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032608 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654032613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654032614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654032618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654032619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654032623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654032625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654032631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79% coverage of the annotated genomic feature by RNAseq alignments
38654032636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654032637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 44% coverage of the annotated genomic feature by RNAseq alignments
38654032639 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 8 bases in 5 codons; deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654032640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654032641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654032646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654032647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654032657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654032659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654032660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654032661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654032663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032666 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654032667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654032668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654032669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032672 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654032673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032691 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654032693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654032713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654032714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654032722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654032743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032747 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654032748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 59% coverage of the annotated genomic feature by RNAseq alignments
38654032762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654032767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032772 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654032774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 112 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 323 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 323 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 323 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 323 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 323 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 323 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 323 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654032851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654032854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654032865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654032890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654032900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654032919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80% coverage of the annotated genomic feature by RNAseq alignments
38654032927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654032933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654032942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654032957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654032968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654032981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654032982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654032983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654032984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654032988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654032990 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654032991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654032992 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654032993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654032994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654032996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654032997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654032998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654032999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654033029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654033030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 11% coverage of the annotated genomic feature by RNAseq alignments
38654033037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654033052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 17% coverage of the annotated genomic feature by RNAseq alignments
38654033053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654033054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654033055 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654033056 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 74% coverage of the annotated genomic feature by RNAseq alignments
38654033070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654033076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654033086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 53% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654033094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654033108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654033115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654033122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654033123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654033124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 10% coverage of the annotated genomic feature by RNAseq alignments
38654033143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654033144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654033169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 295 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654033179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654033183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654033184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033234 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654033238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654033240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654033241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 49% coverage of the annotated genomic feature by RNAseq alignments
38654033268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033280 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654033329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 194 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 195 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 180 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 174 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654033348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87% coverage of the annotated genomic feature by RNAseq alignments
38654033358 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654033360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654033361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654033362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654033365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654033369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654033370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654033371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654033373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654033386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654033388 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033402 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments
38654033412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654033433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654033517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654033536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654033589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654033604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654033612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654033629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654033630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654033631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654033633 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654033634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654033640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033643 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654033644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654033648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654033651 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654033652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033653 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654033654 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654033663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654033666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654033668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654033669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments
38654033670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033672 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654033681 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654033706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654033708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654033756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 Protein
38654033762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 mRNA, 1 Protein, and 33% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654033778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654033783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654033796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654033797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654033800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654033801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 60% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654033803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 88% coverage of the annotated genomic feature by RNAseq alignments
38654033809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 88% coverage of the annotated genomic feature by RNAseq alignments
38654033814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654033815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 30% coverage of the annotated genomic feature by RNAseq alignments
38654033819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033842 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033857 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 60 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
38654033871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 6% coverage of the annotated genomic feature by RNAseq alignments
38654033872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654033873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654033874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654033881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654033890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654033905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654033906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654033912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654033918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033924 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654033930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654033934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654033939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654033941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654033944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654033948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654033949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39% coverage of the annotated genomic feature by RNAseq alignments
38654033980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654033984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654033988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654033990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033994 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654033995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654033996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654033997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654033999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 54 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654034002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654034038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 21% coverage of the annotated genomic feature by RNAseq alignments
38654034039 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 9% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 91 Proteins
38654034041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 110 Proteins
38654034043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins
38654034044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 89 Proteins
38654034045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins
38654034046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 131 Proteins
38654034047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins
38654034048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 119 Proteins, and 57% coverage of the annotated genomic feature by RNAseq alignments
38654034049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 131 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034050 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 130 Proteins
38654034052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins
38654034053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 119 Proteins
38654034054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 129 Proteins
38654034055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 117 Proteins
38654034056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96 Proteins
38654034057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 117 Proteins
38654034058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 139 Proteins
38654034059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 113 Proteins
38654034060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 117 Proteins
38654034062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654034063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 122 Proteins
38654034064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 142 Proteins
38654034065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654034086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654034097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654034128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034133 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034144 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654034168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 51% coverage of the annotated genomic feature by RNAseq alignments
38654034193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 94% coverage of the annotated genomic feature by RNAseq alignments
38654034204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034223 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654034250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 73% coverage of the annotated genomic feature by RNAseq alignments
38654034251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 75% coverage of the annotated genomic feature by RNAseq alignments
38654034252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 52% coverage of the annotated genomic feature by RNAseq alignments
38654034253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654034257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654034258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034259 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 97 Proteins
38654034264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98 Proteins
38654034265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins
38654034266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
38654034267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90 Proteins
38654034268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins
38654034269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654034270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654034274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 71 Proteins
38654034275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins
38654034276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins
38654034277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
38654034278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63 Proteins
38654034279 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins
38654034280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 62 Proteins, and 19% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins
38654034282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 57 Proteins
38654034283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins
38654034284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins
38654034285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
38654034286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
38654034287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
38654034288 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins
38654034289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
38654034290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins
38654034291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins
38654034292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034293 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654034294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654034295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins
38654034296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
38654034297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins
38654034298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654034299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins
38654034300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins
38654034301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 55 Proteins
38654034302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654034319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 86 Proteins, and 4% coverage of the annotated genomic feature by RNAseq alignments
38654034346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654034377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034381 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034383 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034412 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654034413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 46% coverage of the annotated genomic feature by RNAseq alignments
38654034434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654034441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654034442 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654034485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034498 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654034501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034510 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034512 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654034514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83 Proteins
38654034516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 92 Proteins
38654034517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 79 Proteins
38654034518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins
38654034519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins
38654034520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654034521 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 16% coverage of the annotated genomic feature by RNAseq alignments
38654034522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 13% coverage of the annotated genomic feature by RNAseq alignments
38654034523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034525 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034546 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034547 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 128 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 127 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034555 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654034568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034587 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654034588 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
38654034589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 67% coverage of the annotated genomic feature by RNAseq alignments
38654034590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments
38654034591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 89% coverage of the annotated genomic feature by RNAseq alignments
38654034603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034605 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 84 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 96% coverage of the annotated genomic feature by RNAseq alignments
38654034617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654034618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654034619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034623 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins
38654034631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 49 Proteins
38654034632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 58 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14% coverage of the annotated genomic feature by RNAseq alignments
38654034656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034678 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654034702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 68 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654034711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 66 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654034721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins
38654034725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654034726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034729 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654034742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034747 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins
38654034750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654034751 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654034752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034753 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654034754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins
38654034756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 50% coverage of the annotated genomic feature by RNAseq alignments
38654034757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654034758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 5% coverage of the annotated genomic feature by RNAseq alignments
38654034759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034760 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 15% coverage of the annotated genomic feature by RNAseq alignments
38654034761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654034763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654034785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654034787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654034788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034791 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 66% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654034823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 15% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034839 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654034844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654034847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 77% coverage of the annotated genomic feature by RNAseq alignments
38654034853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 80 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 59 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654034874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654034887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654034888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034894 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654034895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034899 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654034900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654034901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654034904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 63% coverage of the annotated genomic feature by RNAseq alignments
38654034911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 90% coverage of the annotated genomic feature by RNAseq alignments
38654034912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034913 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654034915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654034921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034923 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654034926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654034930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654034932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654034934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654034935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 70% coverage of the annotated genomic feature by RNAseq alignments
38654034937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 8% coverage of the annotated genomic feature by RNAseq alignments
38654034942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654034943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 40% coverage of the annotated genomic feature by RNAseq alignments
38654034945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins
38654034946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins
38654034947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034948 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034970 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654034976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654034977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654034978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654034982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654034983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654034985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654034988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654034992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654034994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654034995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654034996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654034998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654034999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035015 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654035025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654035029 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654035030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035032 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67% coverage of the annotated genomic feature by RNAseq alignments
38654035039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 87% coverage of the annotated genomic feature by RNAseq alignments
38654035040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 78% coverage of the annotated genomic feature by RNAseq alignments
38654035062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654035063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035066 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654035073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 26% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 191 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654035107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 111 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 41 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 44 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654035113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035120 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 74 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 31 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654035135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 69% coverage of the annotated genomic feature by RNAseq alignments
38654035144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654035149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654035150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654035157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035168 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654035169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654035175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 80% coverage of the annotated genomic feature by RNAseq alignments
38654035182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654035183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654035201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035223 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654035225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035229 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035246 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035252 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 308 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 175 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035261 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 114 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 252 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 251 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035264 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 251 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 252 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035266 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 251 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035274 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035275 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 205 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 65 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035288 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035314 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035316 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins
38654035352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654035387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 27 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654035452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654035460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654035464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035468 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 39% coverage of the annotated genomic feature by RNAseq alignments
38654035469 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035470 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035471 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035472 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035473 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035474 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035475 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035476 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035477 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035478 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035479 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035480 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035481 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035482 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654035483 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035484 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035485 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035486 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 168 Proteins
38654035487 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654035488 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 40 Proteins
38654035489 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 152 Proteins
38654035490 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035491 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035492 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035493 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035494 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035495 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins
38654035496 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins
38654035497 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 108 Proteins
38654035498 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 53% coverage of the annotated genomic feature by RNAseq alignments
38654035499 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654035500 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 45% coverage of the annotated genomic feature by RNAseq alignments
38654035501 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035502 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035503 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035504 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035505 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035506 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035507 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035508 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035509 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035510 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035511 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035512 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654035513 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035514 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035515 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035516 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035517 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035518 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035519 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035520 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035521 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035522 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035523 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035524 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035525 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654035526 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 579 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035527 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 47 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035528 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654035529 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035530 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035531 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035532 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035533 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035534 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035535 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035536 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035537 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035538 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035539 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035540 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035541 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035542 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035543 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035544 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035545 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035546 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035547 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035548 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654035549 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035550 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654035551 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654035552 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035553 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035554 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035555 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035556 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035557 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035558 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035559 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035560 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035561 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035562 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035563 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035564 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035565 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035566 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035567 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035568 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035569 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035570 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035571 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035572 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035573 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035574 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035575 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035576 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035577 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035578 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035579 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035580 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035581 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035582 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035583 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035584 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035585 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035586 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654035587 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654035588 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035589 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 72% coverage of the annotated genomic feature by RNAseq alignments
38654035590 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 60% coverage of the annotated genomic feature by RNAseq alignments
38654035591 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035592 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035593 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035594 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035595 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035596 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035597 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035598 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035599 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035600 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035601 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035602 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035603 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035604 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035605 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035606 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035607 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654035608 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035609 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035610 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035611 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035612 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035613 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments
38654035614 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035615 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035616 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035617 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035618 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035619 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 83% coverage of the annotated genomic feature by RNAseq alignments
38654035620 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 84% coverage of the annotated genomic feature by RNAseq alignments
38654035621 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035622 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035623 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035624 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035625 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035626 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035627 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035628 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035629 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035630 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035631 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035632 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035633 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035634 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035635 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035636 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035637 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035638 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035639 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035640 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654035641 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035642 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035643 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035644 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035645 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035646 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035647 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035648 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035649 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035650 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035651 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035652 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035653 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035654 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035655 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035656 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035657 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035658 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035659 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 53 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035660 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035661 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035662 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035663 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035664 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035665 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035666 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035667 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035668 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035669 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035670 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035671 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035672 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035673 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035674 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035675 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035676 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035677 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035678 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654035679 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035680 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035681 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654035682 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 83% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035683 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 82% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035684 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 82% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035685 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035686 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035687 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035688 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035689 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035690 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035691 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035692 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035693 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035694 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035695 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035696 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035697 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035698 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035699 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035700 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035701 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035702 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035703 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035704 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035705 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035706 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035707 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035708 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035709 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035710 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035711 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035712 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035713 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 86% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035714 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035715 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035716 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035717 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035718 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035719 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035720 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035721 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035722 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035723 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035724 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 85% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035725 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035726 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035727 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 55% coverage of the annotated genomic feature by RNAseq alignments
38654035728 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 61% coverage of the annotated genomic feature by RNAseq alignments
38654035729 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035730 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035731 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035732 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035733 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035734 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035735 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035736 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035737 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035738 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035739 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035740 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035741 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035742 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035743 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035744 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035745 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035746 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035747 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035748 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035749 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035750 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035751 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035752 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035753 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035754 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035755 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035756 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035757 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654035758 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035759 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654035760 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 62% coverage of the annotated genomic feature by RNAseq alignments
38654035761 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 23% coverage of the annotated genomic feature by RNAseq alignments
38654035762 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035763 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035764 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035765 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035766 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035767 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035768 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035769 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035770 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654035771 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035772 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035773 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035774 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035775 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035776 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035777 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035778 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035779 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035780 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035781 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035782 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035783 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035784 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035785 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035786 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035787 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035788 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035789 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035790 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 71% coverage of the annotated genomic feature by RNAseq alignments
38654035791 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035792 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035793 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654035794 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035795 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035796 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 28% coverage of the annotated genomic feature by RNAseq alignments
38654035797 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035798 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035799 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035800 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035801 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035802 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035803 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035804 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035805 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035806 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035807 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035808 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035809 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654035810 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035811 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035812 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035813 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035814 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035815 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035816 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035817 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035818 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035819 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 86% coverage of the annotated genomic feature by RNAseq alignments
38654035820 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035821 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035822 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035823 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035824 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035825 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035826 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035827 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035828 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035829 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035830 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035831 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035832 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035833 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035834 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035835 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035836 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035837 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035838 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035839 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035840 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035841 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 38 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035842 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035843 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035844 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035845 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035846 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 36 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035847 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035848 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 50% coverage of the annotated genomic feature by RNAseq alignments
38654035849 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654035850 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654035851 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035852 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035853 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035854 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035855 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035856 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035857 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035858 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035859 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035860 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035861 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035862 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035863 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035864 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035865 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035866 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035867 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035868 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035869 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035870 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654035871 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035872 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035873 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035874 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035875 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035876 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035877 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035878 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035879 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 90% coverage of the annotated genomic feature by RNAseq alignments
38654035880 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035881 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035882 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035883 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035884 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035885 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035886 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035887 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035888 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035889 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035890 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035891 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035892 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035893 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035894 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 64 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035895 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 35 Proteins, and 14% coverage of the annotated genomic feature by RNAseq alignments
38654035896 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035897 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654035898 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 9% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035899 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins
38654035900 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 32% coverage of the annotated genomic feature by RNAseq alignments
38654035901 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins
38654035902 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins
38654035903 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
38654035904 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
38654035905 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 33 Proteins
38654035906 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins
38654035907 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins
38654035908 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins
38654035909 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins
38654035910 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 23 Proteins
38654035911 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035912 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035913 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein
38654035914 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654035915 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 32 Proteins, and 76% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035916 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035917 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035918 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins
38654035919 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035920 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035921 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654035922 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 42 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035923 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654035924 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654035925 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654035926 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 52% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035927 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 57% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035928 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035929 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035930 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035931 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035932 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035933 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035934 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035935 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654035936 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035937 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035938 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035939 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035940 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 83% coverage of the annotated genomic feature by RNAseq alignments
38654035941 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035942 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035943 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035944 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035945 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035946 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035947 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035948 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654035949 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035950 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035951 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035952 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035953 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654035954 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035955 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035956 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035957 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035958 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035959 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035960 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035961 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035962 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035963 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035964 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035965 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035966 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035967 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654035968 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035969 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035970 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035971 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035972 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035973 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654035974 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035975 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035976 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035977 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035978 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035979 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035980 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035981 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035982 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654035983 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035984 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035985 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654035986 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035987 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035988 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654035989 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035990 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 15 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654035991 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654035992 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654035993 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035994 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654035995 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654035996 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035997 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654035998 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654035999 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036000 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036001 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036002 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036003 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036004 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036005 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036006 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036007 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036008 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036009 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036010 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036011 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036012 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036013 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036014 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036015 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036016 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036017 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036018 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036019 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 79% coverage of the annotated genomic feature by RNAseq alignments
38654036020 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036021 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036022 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036023 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 58% coverage of the annotated genomic feature by RNAseq alignments
38654036024 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 56% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036025 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654036026 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654036027 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036028 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036029 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036030 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036031 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654036032 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036033 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036034 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036035 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036036 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036037 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036038 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036039 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036040 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036041 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036042 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036043 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036044 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036045 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036046 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036047 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036048 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036049 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036050 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036051 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036052 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036053 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036054 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036055 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036056 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036057 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036058 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036059 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036060 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036061 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036062 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036063 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036064 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036065 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036066 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036067 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036068 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036069 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 30 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036070 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036071 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036072 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036073 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036074 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036075 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036076 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036077 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036078 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 65% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036079 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036080 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036081 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036082 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036083 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036084 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036085 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036086 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654036087 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036088 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036089 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036090 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036091 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 34% coverage of the annotated genomic feature by RNAseq alignments
38654036092 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654036093 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036094 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036095 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036096 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036097 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036098 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036099 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036100 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 36% coverage of the annotated genomic feature by RNAseq alignments
38654036101 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036102 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036103 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036104 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036105 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036106 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654036107 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036108 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036109 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036110 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036111 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036112 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036113 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036114 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036115 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036116 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036117 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036118 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036119 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036120 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 69% coverage of the annotated genomic feature by RNAseq alignments
38654036121 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036122 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036123 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036124 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036125 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036126 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036127 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036128 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036129 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036130 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036131 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036132 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 31% coverage of the annotated genomic feature by RNAseq alignments
38654036133 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654036134 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036135 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036136 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036137 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036138 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036139 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036140 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036141 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036142 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654036143 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036144 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036145 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036146 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036147 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036148 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036149 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036150 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036151 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036152 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036153 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments
38654036154 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036155 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036156 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036157 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036158 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036159 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036160 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036161 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036162 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036163 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036164 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036165 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036166 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036167 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036168 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036169 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036170 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036171 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036172 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036173 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036174 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036175 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036176 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036177 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036178 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036179 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036180 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036181 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036182 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036183 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036184 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036185 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 29% coverage of the annotated genomic feature by RNAseq alignments
38654036186 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 69% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036187 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 17 Proteins, and 81% coverage of the annotated genomic feature by RNAseq alignments
38654036188 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036189 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036190 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036191 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036192 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036193 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036194 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036195 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036196 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036197 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036198 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036199 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036200 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036201 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036202 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036203 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036204 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036205 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036206 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036207 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036208 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036209 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036210 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036211 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036212 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036213 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036214 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036215 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036216 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036217 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036218 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036219 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036220 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036221 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036222 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036223 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036224 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036225 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036226 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036227 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036228 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036229 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036230 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036231 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036232 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036233 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036234 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036235 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036236 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036237 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036238 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654036239 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036240 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036241 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036242 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036243 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 48 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036244 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 45 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654036245 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036246 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654036247 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036248 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654036249 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036250 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036251 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 580 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036252 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 3 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 450 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036253 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 553 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654036254 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036255 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 95% coverage of the annotated genomic feature by RNAseq alignments
38654036256 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 47% coverage of the annotated genomic feature by RNAseq alignments
38654036257 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036258 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036259 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036260 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036261 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 4 bases in 2 codons; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 92% coverage of the annotated genomic feature by RNAseq alignments
38654036262 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036263 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036264 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036265 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036266 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 9 Proteins, and 88% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036267 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036268 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036269 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 37 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036270 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036271 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036272 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036273 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036274 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036275 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654036276 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036277 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036278 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654036279 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036280 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036281 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036282 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036283 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036284 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036285 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036286 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 20 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654036287 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036288 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036289 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036290 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036291 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 67 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036292 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 22 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036293 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654036294 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036295 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036296 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036297 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036298 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036299 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036300 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036301 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036302 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036303 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036304 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036305 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036306 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 21 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036307 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036308 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036309 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036310 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036311 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036312 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036313 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036314 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 91% coverage of the annotated genomic feature by RNAseq alignments
38654036315 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 90% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036316 The sequence of the model RefSeq transcript was modified relative to this genomic sequence to represent the inferred CDS: inserted 2 bases in 1 codon; deleted 1 base in 1 codon; Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036317 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 18 Proteins, and 82% coverage of the annotated genomic feature by RNAseq alignments
38654036318 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 85% coverage of the annotated genomic feature by RNAseq alignments
38654036319 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036320 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 93% coverage of the annotated genomic feature by RNAseq alignments
38654036321 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036322 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036323 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654036324 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 39 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654036325 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036326 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036327 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036328 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 19 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654036329 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036330 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 29 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036331 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 28 Proteins, and 95% coverage of the annotated genomic feature by RNAseq alignments
38654036332 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 25 Proteins, and 25% coverage of the annotated genomic feature by RNAseq alignments
38654036333 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036334 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036335 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036336 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036337 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036338 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036339 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036340 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036341 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036342 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036343 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036344 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036345 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036346 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036347 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036348 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036349 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036350 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036351 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036352 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036353 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036354 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036355 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 14 samples with support for all annotated introns
38654036356 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins
38654036357 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036358 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036359 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036360 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036361 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 91% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036362 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036363 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 34 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036364 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036365 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036366 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036367 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036368 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036369 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036370 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins
38654036371 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 5% coverage of the annotated genomic feature by RNAseq alignments
38654036372 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 7 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036373 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036374 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036375 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036376 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036377 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036378 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036379 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036380 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036381 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036382 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036383 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036384 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036385 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 11 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654036386 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036387 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036388 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036389 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036390 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036391 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 94% coverage of the annotated genomic feature by RNAseq alignments
38654036392 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 98% coverage of the annotated genomic feature by RNAseq alignments
38654036393 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036394 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 8 samples with support for all annotated introns
38654036395 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036396 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036397 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036398 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036399 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036400 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036401 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036402 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036403 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036404 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036405 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036406 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036407 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 239 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments
38654036408 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036409 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 278 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036410 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 123 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036411 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 272 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 11 samples with support for all annotated introns
38654036412 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 87 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036413 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 122 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036414 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 48% coverage of the annotated genomic feature by RNAseq alignments
38654036415 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036416 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036417 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 9 samples with support for all annotated introns
38654036418 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036419 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036420 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036421 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036422 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036423 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036424 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036425 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036426 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036427 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036428 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036429 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036430 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 13 samples with support for all annotated introns
38654036431 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 97% coverage of the annotated genomic feature by RNAseq alignments
38654036432 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036433 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 10 samples with support for all annotated introns
38654036434 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036435 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036436 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036437 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 16 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036438 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654036439 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036440 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036441 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036442 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036443 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036444 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 12 samples with support for all annotated introns
38654036445 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036446 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 6 samples with support for all annotated introns
38654036447 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036448 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036449 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 99% coverage of the annotated genomic feature by RNAseq alignments
38654036450 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 14 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036451 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 3 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036452 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 10 Proteins, and 98% coverage of the annotated genomic feature by RNAseq alignments
38654036453 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036454 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 12 Proteins
38654036455 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 64% coverage of the annotated genomic feature by RNAseq alignments
38654036456 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 6 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036457 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036458 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 1 Protein, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 5 samples with support for all annotated introns
38654036459 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036460 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 24 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 2 samples with support for all annotated introns
38654036461 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 4 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036462 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 8 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 3 samples with support for all annotated introns
38654036463 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 100% coverage of the annotated genomic feature by RNAseq alignments, including 1 sample with support for all annotated introns
38654036464 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 4 samples with support for all annotated introns
38654036465 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 5 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 7 samples with support for all annotated introns
38654036466 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 13 Proteins, and 96% coverage of the annotated genomic feature by RNAseq alignments
38654036467 Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes sim